GHB: Difference between revisions
>Josikins |
>Josikins |
||
Line 37: | Line 37: | ||
However, at therapeutic doses, GHB reaches much higher concentrations in the brain and activates [[GABA]]<sub>B</sub> receptors, which are primarily responsible for its sedative effects.<ref>Drosophila GABAB receptors are involved in behavioral effects of γ-hydroxybutyric acid (GHB) | http://www.sciencedirect.com/science/article/pii/S0014299905007442</ref> GHB's sedative effects are blocked by GABA<sub>B</sub> [[antagonists]]. | However, at therapeutic doses, GHB reaches much higher concentrations in the brain and activates [[GABA]]<sub>B</sub> receptors, which are primarily responsible for its sedative effects.<ref>Drosophila GABAB receptors are involved in behavioral effects of γ-hydroxybutyric acid (GHB) | http://www.sciencedirect.com/science/article/pii/S0014299905007442</ref> GHB's sedative effects are blocked by GABA<sub>B</sub> [[antagonists]]. | ||
There has been somewhat limited research into the GHB receptor; however, there is evidence that activation of the GHB receptor in some brain areas results in the release of [[glutamate]], the principal excitatory neurotransmitter.<ref>Selective γ-hydroxybutyric acid receptor ligands increase extracellular glutamate in the hippocampus, but fail to activate G protein and to produce the sedative/hypnotic effect of γ-hydroxybutyric acid | http://onlinelibrary.wiley.com/doi/10.1046/j.1471-4159.2003.02037.x/abstract</ref> Drugs that selectively activate the GHB receptor cause absence seizures in high doses, as do GHB and [[GABA]]<sub>B</sub> agonists.<ref>Selective γ-hydroxybutyric acid receptor ligands increase extracellular glutamate in the hippocampus, but fail to activate G protein and to produce the sedative/hypnotic effect of γ-hydroxybutyric acid | http://onlinelibrary.wiley.com/doi/10.1046/j.1471-4159.2003.02037.x/abstract</ref> | |||
Activation of both the GHB receptor and [[GABA]]<sub>B</sub> is responsible for the addictive profile of GHB. GHB's effect on dopamine release is biphasic.<ref>Drosophila [[GABA]]<sub>B</sub> receptors are involved in behavioral effects of γ-hydroxybutyric acid (GHB) | http://www.sciencedirect.com/science/article/pii/S0014299905007442</ref> Low concentrations stimulate dopamine release via the GHB receptor.<ref>A specific gamma-hydroxybutyrate receptor ligand possesses both antagonistic and anticonvulsant properties | http://www.ncbi.nlm.nih.gov/pubmed/2173754</ref> Higher concentrations inhibit dopamine release via [[GABA]]<sub>B</sub> receptors as do other [[GABA]]<sub>B</sub> [[agonists]] such as [[baclofen]] and [[phenibut]].<ref>Tonic GABA-ergic modulation of striatal dopamine release studied by in vivo microdialysis in the freely moving rat | http://www.sciencedirect.com/science/article/pii/001429999500369V</ref> After an initial phase of inhibition, [[dopamine]] release is then increased via the GHB receptor. | Activation of both the GHB receptor and [[GABA]]<sub>B</sub> is responsible for the addictive profile of GHB. GHB's effect on dopamine release is biphasic.<ref>Drosophila [[GABA]]<sub>B</sub> receptors are involved in behavioral effects of γ-hydroxybutyric acid (GHB) | http://www.sciencedirect.com/science/article/pii/S0014299905007442</ref> Low concentrations stimulate dopamine release via the GHB receptor.<ref>A specific gamma-hydroxybutyrate receptor ligand possesses both antagonistic and anticonvulsant properties | http://www.ncbi.nlm.nih.gov/pubmed/2173754</ref> Higher concentrations inhibit dopamine release via [[GABA]]<sub>B</sub> receptors as do other [[GABA]]<sub>B</sub> [[agonists]] such as [[baclofen]] and [[phenibut]].<ref>Tonic GABA-ergic modulation of striatal dopamine release studied by in vivo microdialysis in the freely moving rat | http://www.sciencedirect.com/science/article/pii/001429999500369V</ref> After an initial phase of inhibition, [[dopamine]] release is then increased via the GHB receptor. |