Talk:Autonomous voice communication: Difference between revisions

>Graham
Neurological Analysis
 
>Graham
m In light of additional papers, ref is bad (had a small sample size anyway).
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
==Neurological Analysis==
==Neurological Analysis==
===There are inconsistent results in the functional imaging studies of activation associated with auditory hallucinations===
"There have been several previous functional imaging studies of activation associated with auditory
hallucinations in schizophrenia and to date that have yielded inconsistent results reviewed in Ž Weiss and Heckers, 1999 .
These findings of temporal cortical activation during auditory hallucinations would support the theory that a receptive verbal auditory function underlies the experience of hallucination. Bilateral temporal activations are shown in response to presentation of verbal material in normal volunteers Price et al., 1996; Dhankar et al., Ž 1997; Binder et al., 1997 . In addition, activation . in the same temporal cortical area in response to both hallucination and presentation of verbal auditory stimulation has been shown Woodruff et Ž al., 1995; Dierks et al., 1999 , suggesting that hallucinations compete with exogenous sound for temporal cortex activation
We did not demonstrate activation in Broca’s area BA 44 and 45 in any subject. Therefore our Ž . findings offer no support to the theory that auditory hallucinations arise from abnormalities of inner speech McGuire et al., 1995"<ref name="Lennox2000">Lennox, B. R., Park, S. B. G., Medley, I., Morris, P. G., & Jones, P. B. (2000). The functional anatomy of auditory hallucinations in schizophrenia. Psychiatry Research: Neuroimaging, 100(1), 13-20. https://doi.org/10.1016/S0925-4927(00)00068-8</ref> '''{Note this has a small sample size}'''
===Increased blood flow in Broca’s area during auditory hallucinations in schizophrenia===
===Increased blood flow in Broca’s area during auditory hallucinations in schizophrenia===
"The exclusively left-hemispheric location of the regions loading heavily on the first principal component suggests the involvement of language areas. The critical role of Broca’s area in this respect is well known, and PET studies have shown that the left temporal contribution to language functions is not restricted to Wernicke’s area, but extends to regions in the middle temporal gyrus21,22 and medial temporal lobe.23.24 The anterior cingulate cortex has also been activated in PET studies of language tasks, although this may reflect a role in the selection or initiation of movements (including speech), rather than a function specific to language itself.2s27 Since these areas are
"The exclusively left-hemispheric location of the regions loading heavily on the first principal component suggests the involvement of language areas. The critical role of Broca’s area in this respect is well known, and PET studies have shown that the left temporal contribution to language functions is not restricted to Wernicke’s area, but extends to regions in the middle temporal gyrus21,22 and medial temporal lobe.23.24 The anterior cingulate cortex has also been activated in PET studies of language tasks, although this may reflect a role in the selection or initiation of movements (including speech), rather than a function specific to language itself.2s27 Since these areas are
Line 21: Line 13:


"The results of this study show that areas in the left frontal and temporal lobe that have been implicated in the phonological analysis of spoken words are also activated during the generation and phonological analysis of imagined speech. This was accomplished with the use of a novel task that allowed the neural assessment of auditory--verbal imagery (internally generating and ‘perceiving’ imagined speech) in a behaviorally controlled design. Conditions were compared in which the subjects (i) actually heard spoken words or (ii) imagined hearing spoken words, and subsequently discriminated between weak-initial words and strong-initial words (metrical stress evaluation). Extensive activation was observed in language production areas in the left hemisphere: SMA, inferior frontal gyrus (Broca’s area) and insula. These regions have typically been shown to be activated also in tasks of silent verbal fluency (Cuenod et al., 1995; Ojemann et al., 1998; Lurito et al., 2000), and silent reading of words and pseudowords (Hagoort et al., 1999). Consistent with previous language-related studies on phoneme monitoring, phoneme/syllable counting and word rhyming (for a review, Poldrack et al., 1999), it is of interest to note the implication of the inferior frontal gyrus in phonological processing and not merely speech production (Wise et al., 1999)."<ref name="Aleman2004">Aleman, A., Formisano, E., Koppenhagen, H., Hagoort, P., De Haan, E. H., & Kahn, R. S. (2004). The functional neuroanatomy of metrical stress evaluation of perceived and imagined spoken words. Cerebral Cortex, 15(2), 221-228. https://doi.org/10.1093/cercor/bhh124</ref>
"The results of this study show that areas in the left frontal and temporal lobe that have been implicated in the phonological analysis of spoken words are also activated during the generation and phonological analysis of imagined speech. This was accomplished with the use of a novel task that allowed the neural assessment of auditory--verbal imagery (internally generating and ‘perceiving’ imagined speech) in a behaviorally controlled design. Conditions were compared in which the subjects (i) actually heard spoken words or (ii) imagined hearing spoken words, and subsequently discriminated between weak-initial words and strong-initial words (metrical stress evaluation). Extensive activation was observed in language production areas in the left hemisphere: SMA, inferior frontal gyrus (Broca’s area) and insula. These regions have typically been shown to be activated also in tasks of silent verbal fluency (Cuenod et al., 1995; Ojemann et al., 1998; Lurito et al., 2000), and silent reading of words and pseudowords (Hagoort et al., 1999). Consistent with previous language-related studies on phoneme monitoring, phoneme/syllable counting and word rhyming (for a review, Poldrack et al., 1999), it is of interest to note the implication of the inferior frontal gyrus in phonological processing and not merely speech production (Wise et al., 1999)."<ref name="Aleman2004">Aleman, A., Formisano, E., Koppenhagen, H., Hagoort, P., De Haan, E. H., & Kahn, R. S. (2004). The functional neuroanatomy of metrical stress evaluation of perceived and imagined spoken words. Cerebral Cortex, 15(2), 221-228. https://doi.org/10.1093/cercor/bhh124</ref>
===Self or reality monitoring regions of the brain are involved===
"The most popular cognitive theory of AVHs is arguably that many are the result of internal cognitive events, such as inner speech, being misattributed to an external or alien source (Waters et al., 2012a). Various models have suggested that this could be due to a specific deficit in the monitoring of one's own actions, known as self-monitoring (Frith, 1992), and/or due to a bias towards labelling internal mental events as externally produced under conditions of ambiguity, known as a bias in reality monitoring (Bentall and Slade, 1985). Evidence from neuroimaging suggests that monitoring of one's own speech, overt or covert, is related to activity in auditory cortical regions such as the lateral temporal lobe, including the superior temporal gyri (STG), a brain area that includes both primary and secondary auditory cortices (Allen et al., 2007; McGuire et al., 1996a). This corresponds well to ‘symptom-capture’ studies of AVHs, in which similar areas are often implicated (Allen et al., 2008). rTMS treatment is usually targeted at the left temporoparietal junction (TPJ), an area adjacent to, and with high levels of connectivity to, primary and secondary auditory cortex (Kindler et al., 2013). Therefore, it is possible that neurostimulation treatment affects brain regions involved in verbal self- or reality monitoring."<ref name="Moseley2013">Moseley, P., Fernyhough, C., & Ellison, A. (2013). Auditory verbal hallucinations as atypical inner speech monitoring, and the potential of neurostimulation as a treatment option. Neuroscience & Biobehavioral Reviews, 37(10), 2794-2805. https://dx.doi.org/10.1016%2Fj.neubiorev.2013.10.001</ref>
===References===
===References===
<references/>
<references/>
Return to "Autonomous voice communication" page.