MAOI: Difference between revisions
>David Hedlund →By chemicals: Monoamine precursor |
>Graham m wiki ref formatting |
||
Line 4: | Line 4: | ||
{{For|reversible inhibitor of monoamine oxidase A|RIMA}} | {{For|reversible inhibitor of monoamine oxidase A|RIMA}} | ||
'''Monoamine oxidase inhibitors''' (also known as '''MAOIs''') are a class of drugs which inhibit the activity of the monoamine oxidase enzyme family. They have a long history of use as medications prescribed for the treatment of depression and are particularly effective in treating atypical depression.<ref>Cristancho, | '''Monoamine oxidase inhibitors''' (also known as '''MAOIs''') are a class of drugs which inhibit the activity of the monoamine oxidase enzyme family. They have a long history of use as medications prescribed for the treatment of depression and are particularly effective in treating atypical depression.<ref>{{cite journal | vauthors=((Mario A. Cristancho, M. D.)), ((John P. O’reardon, M. D.)), ((Michael E. Thase, M. D.)) | journal=Psychiatric Times | title=Atypical Depression in the 21st Century: Diagnostic and Treatment Issues | volume=28 | issue=1 | date=20 November 2012 | url=https://www.psychiatrictimes.com/view/atypical-depression-21st-century-diagnostic-and-treatment-issues | access-date = November 23, 2013}}</ref> They are also used in the treatment of social anxiety, Parkinson's disease and several other disorders.<ref>{{Citation | year=2020 | title=Nardil (Phenelzine Sulfate) - The BEST Antidepressant For Social Anxiety & Depression | url=https://nardil.org/}}</ref> | ||
==Mechanism of action== | ==Mechanism of action== | ||
MAOIs act by inhibiting the activity of monoamine oxidase, preventing the breakdown of monoamine neurotransmitters and thereby increasing their availability. There are two isoforms of monoamine oxidase, MAO-A and MAO-B. | MAOIs act by inhibiting the activity of monoamine oxidase, preventing the breakdown of monoamine neurotransmitters and thereby increasing their availability. There are two isoforms of monoamine oxidase, MAO-A and MAO-B. | ||
MAOA preferentially deaminates [[norepinephrine]] (NE), [[serotonin]] (5-HT) and [[epinephrine]] (E), while MAOB preferentially deaminates benzylamine and [[phenylethylamine]] (PEA). [[Dopamine]] (DA) and [[tyramine]] are equally catabolized by both forms of MAO.<ref> | MAOA preferentially deaminates [[norepinephrine]] (NE), [[serotonin]] (5-HT) and [[epinephrine]] (E), while MAOB preferentially deaminates benzylamine and [[phenylethylamine]] (PEA). [[Dopamine]] (DA) and [[tyramine]] are equally catabolized by both forms of MAO.<ref name="Berlin2001">{{cite journal | vauthors=((Berlin, I.)), ((Anthenelli, R. M.)) | journal=The International Journal of Neuropsychopharmacology | title=Monoamine oxidases and tobacco smoking | volume=4 | issue=1 | pages=33–42 | date= March 2001 | issn=1461-1457 | doi=10.1017/S1461145701002188}}</ref> | ||
===Reversibility=== | ===Reversibility=== | ||
Line 22: | Line 22: | ||
*Substances with slow elimination | *Substances with slow elimination | ||
**[[Methamphetamine]]: Because of its slow elimination, low concentrations of Methamphetamine can be detected in urine for up to 7 days after a single oral dose of 30 mg (Valentine et al., 1995) or up to 60 h after a single 15-mg smoked or intravenous dose (Cook et al., 1993).<ref>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3126645/</ref> A chronic meth user might still test positive seven to 10 days after consuming the drug. | **[[Methamphetamine]]: Because of its slow elimination, low concentrations of Methamphetamine can be detected in urine for up to 7 days after a single oral dose of 30 mg (Valentine et al., 1995) or up to 60 h after a single 15-mg smoked or intravenous dose (Cook et al., 1993).<ref>{{cite journal | vauthors=((Li, L.)), ((Galloway, G. P.)), ((Verotta, D.)), ((Everhart, E. T.)), ((Baggott, M. J.)), ((Coyle, J. R.)), ((Lopez, J. C.)), ((Mendelson, J.)) | journal=The Journal of Pharmacology and Experimental Therapeutics | title=A Method to Quantify Illicit Intake of Drugs from Urine: Methamphetamine | volume=338 | issue=1 | pages=31–36 | date= July 2011 | url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3126645/ | issn=0022-3565 | doi=10.1124/jpet.111.179176}}</ref> A chronic meth user might still test positive seven to 10 days after consuming the drug. | ||
*Pharmacotherapy examples | *Pharmacotherapy examples | ||
**[[#Nonselective_MAO-A_and_MAO-B_inhibitors|Cannabinoids]]: Cannabinoids are lipophilic. For example, THC has been detected in heavy cannabis users after 77 days of drug abstinence (Ellis et al., 1985).<ref> | **[[#Nonselective_MAO-A_and_MAO-B_inhibitors|Cannabinoids]]: Cannabinoids are lipophilic. For example, THC has been detected in heavy cannabis users after 77 days of drug abstinence (Ellis et al., 1985).<ref>{{cite journal | vauthors=((Ellis, G. M.)), ((Mann, M. A.)), ((Judson, B. A.)), ((Schramm, N. T.)), ((Tashchian, A.)) | journal=Clinical Pharmacology and Therapeutics | title=Excretion patterns of cannabinoid metabolites after last use in a group of chronic users | volume=38 | issue=5 | pages=572–578 | date= November 1985 | issn=0009-9236 | doi=10.1038/clpt.1985.226}}</ref> | ||
**SSRIs: Because of the extended half-life of norfluoxetine, a '''minimum of 5 weeks''' should lapse between stopping fluoxetine (20 mg/day) and starting an MAOI. With higher doses the interval should be longer. For example, a serotonin syndrome was reported following a 6-weeks washout in a patient who had been given fluoxetine (80 mg/day).<ref>Principles and Practice of Psychopharmacotherapy | **SSRIs: Because of the extended half-life of norfluoxetine, a '''minimum of 5 weeks''' should lapse between stopping fluoxetine (20 mg/day) and starting an MAOI. With higher doses the interval should be longer. For example, a serotonin syndrome was reported following a 6-weeks washout in a patient who had been given fluoxetine (80 mg/day).<ref>{{cite book | vauthors=((Janicak, P. G.)), ((Marder, S. R.)), ((Pavuluri, M. N.)) | date=26 December 2011 | title=Principles and Practice of Psychopharmacotherapy | publisher=Lippincott Williams & Wilkins | isbn=9781451178777}}</ref> | ||
*Tolerance from heavy substance use or therapy may cause [https://en.wikipedia.org/wiki/Post-acute-withdrawal_syndrome post-acute-withdrawal syndrome] (PAWS). The condition gradually improves over a period of time which can range from six months to several years in more severe cases.<ref>{{cite journal | author=Roberts AJ |author2=Heyser CJ |author3=Cole M |author4=Griffin P |author5=Koob GF |date=June 2000 | title=Excessive ethanol drinking following a history of dependence: animal model of allostasis | journal =Neuropsychopharmacology | volume=22 | issue=6 | pages=581–94 | pmid=10788758 | doi=10.1016/S0893-133X(99)00167-0}}</ref><ref>{{cite journal | vauthors=De Soto CB, O'Donnell WE, De Soto JL |date=October 1989 | title =Long-term recovery in alcoholics | journal =Alcohol Clin Exp Res | volume =13 | issue =5 | pages =693–7 | pmid =2688470 | doi =10.1111/j.1530-0277.1989.tb00406.x }}</ref> | *Tolerance from heavy substance use or therapy may cause [https://en.wikipedia.org/wiki/Post-acute-withdrawal_syndrome post-acute-withdrawal syndrome] (PAWS). The condition gradually improves over a period of time which can range from six months to several years in more severe cases.<ref>{{cite journal | author=Roberts AJ |author2=Heyser CJ |author3=Cole M |author4=Griffin P |author5=Koob GF |date=June 2000 | title=Excessive ethanol drinking following a history of dependence: animal model of allostasis | journal =Neuropsychopharmacology | volume=22 | issue=6 | pages=581–94 | pmid=10788758 | doi=10.1016/S0893-133X(99)00167-0}}</ref><ref>{{cite journal | vauthors=De Soto CB, O'Donnell WE, De Soto JL |date=October 1989 | title =Long-term recovery in alcoholics | journal =Alcohol Clin Exp Res | volume =13 | issue =5 | pages =693–7 | pmid =2688470 | doi =10.1111/j.1530-0277.1989.tb00406.x }}</ref> | ||
Line 40: | Line 40: | ||
===Tyramine=== | ===Tyramine=== | ||
Tyramine causes hypertensive crises after MAO inhibition aka the "cheese effect" or "cheese crisis". Using a MAO inhibitor (MAOI), the intake of approximately 10 to 25 mg of tyramine is required for a severe reaction compared to 6 to 10 mg for a mild reaction.<ref>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2738414/</ref> Tyramine rich food should also be avoided by people prone to headache and migraine. | Tyramine causes hypertensive crises after MAO inhibition aka the "cheese effect" or "cheese crisis". Using a MAO inhibitor (MAOI), the intake of approximately 10 to 25 mg of tyramine is required for a severe reaction compared to 6 to 10 mg for a mild reaction.<ref>{{cite journal | vauthors=((Sathyanarayana Rao, T. S.)), ((Yeragani, V. K.)) | journal=Indian Journal of Psychiatry | title=Hypertensive crisis and cheese | volume=51 | issue=1 | pages=65–66 | date= 2009 | url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2738414/ | issn=0019-5545 | doi=10.4103/0019-5545.44910}}</ref> Tyramine rich food should also be avoided by people prone to headache and migraine. | ||
====Psychoactive substances==== | ====Psychoactive substances==== | ||
Line 46: | Line 46: | ||
*[[Psychedelic cacti]]. The cacti contain contain a bunch of phenethylamines, not just tyramine (but also 3-Methoxytyramine, methyltyramine, hordenine (aka dimethyltyramine), mescaline, etc) and should thus be avoided with MAOIs. However, tyramine has been identified in these species: | *[[Psychedelic cacti]]. The cacti contain contain a bunch of phenethylamines, not just tyramine (but also 3-Methoxytyramine, methyltyramine, hordenine (aka dimethyltyramine), mescaline, etc) and should thus be avoided with MAOIs. However, tyramine has been identified in these species: | ||
**[[Echinopsis peruviana|Peruvian torch cactus (''Echinopsis peruviana'' (syn. ''Trichocereus peruvianus''))]]<ref name="pubmed-600028"> | **[[Echinopsis peruviana|Peruvian torch cactus (''Echinopsis peruviana'' (syn. ''Trichocereus peruvianus''))]]<ref name="pubmed-600028">{{cite journal | vauthors=((Pardanani, J. H.)), ((McLaughlin, J. L.)), ((Kondrat, R. W.)), ((Cooks, R. G.)) | journal=Lloydia | title=Cactus alkaloids. XXXVI. Mescaline and related compounds from Trichocereus peruvianus | volume=40 | issue=6 | pages=585–590 | date= December 1977 | issn=0024-5461}}</ref> | ||
**[[Echinopsis pachanoi|San Pedro cactus (''Echinopsis pachanoi'' (syn. ''Trichocereus pachanoi''))]]<ref>{{cite journal|author1=Crosby, D.M. |author2=McLaughlin, J.L.|title=Cactus Alkaloids. XIX Crystallization of Mescaline HCl and 3-Methoxytyramine HCl from Trichocereus panchanoi| journal=Lloydia and the Journal of Natural Products| date=Dec 1973 |volume=36 |issue=4 |pages=416–418 |pmid=4773270 |url=http://catbull.com/alamut/Bibliothek/1973_d.m._crosby_8158_1.pdf |accessdate=13 December 2013}}</ref> | **[[Echinopsis pachanoi|San Pedro cactus (''Echinopsis pachanoi'' (syn. ''Trichocereus pachanoi''))]]<ref>{{cite journal|author1=Crosby, D.M. |author2=McLaughlin, J.L.|title=Cactus Alkaloids. XIX Crystallization of Mescaline HCl and 3-Methoxytyramine HCl from Trichocereus panchanoi| journal=Lloydia and the Journal of Natural Products| date=Dec 1973 |volume=36 |issue=4 |pages=416–418 |pmid=4773270 |url=http://catbull.com/alamut/Bibliothek/1973_d.m._crosby_8158_1.pdf |accessdate=13 December 2013}}</ref> | ||
**Other cactis: | **Other cactis: | ||
Line 53: | Line 53: | ||
|- | |- | ||
!Specie | !Specie | ||
!Tyramine (mg/gram of alive plant)<ref name="Grym">Grym, | !Tyramine (mg/gram of alive plant)<ref name="Grym">{{cite book | vauthors=((Grym, R.)) | date= 1997 | title=Rod Lophophora: = Die Gattung Lophophora | publisher=Stanik [u.a.] | isbn=9788090093393}}</ref> | ||
|- | |- | ||
|''[[Lophophora williamsii (botany)|L. williamsii]]'' | |''[[Lophophora williamsii (botany)|L. williamsii]]'' | ||
Line 73: | Line 73: | ||
====Food==== | ====Food==== | ||
Specific foods with high amounts of [[tyramine]]:<ref name="Kathrynne">https://www.mc.vanderbilt.edu/documents/neurology/files/Tyramine%20Menu%20Book%2006227101.pdf</ref><ref name="Estimates of maximum tolerable levels of tyramine content in foods in Austria" /><ref>McCabe-Sellers | Specific foods with high amounts of [[tyramine]]:<ref name="Kathrynne">https://www.mc.vanderbilt.edu/documents/neurology/files/Tyramine%20Menu%20Book%2006227101.pdf</ref><ref name="Estimates of maximum tolerable levels of tyramine content in foods in Austria" /><ref>{{cite journal | vauthors=((McCabe-Sellers, B. J.)), ((Staggs, C. G.)), ((Bogle, M. L.)) | journal=Journal of Food Composition and Analysis | title=Tyramine in foods and monoamine oxidase inhibitor drugs: A crossroad where medicine, nutrition, pharmacy, and food industry converge | volume=19 | pages=S58–S65 | date= August 2006 | url=https://linkinghub.elsevier.com/retrieve/pii/S0889157505001444 | issn=08891575 | doi=10.1016/j.jfca.2005.12.008}}</ref> | ||
*Aged cheese (gouda, camembert, cheddar) -- Few cheeses (even. 'mature' cheeses) contain more than 25 mg of tyramine in 100 grams.<ref>https://psychotropical.info/wp-content/uploads/2018/02/MAOI_diet_drug_interactions_2017.pdf</ref> However, Stilton (a blue cheese) contains up to 217 mg tyramine per 100 grams.<ref name="Kathrynne" /> | *Aged cheese (gouda, camembert, cheddar) -- Few cheeses (even. 'mature' cheeses) contain more than 25 mg of tyramine in 100 grams.<ref>https://psychotropical.info/wp-content/uploads/2018/02/MAOI_diet_drug_interactions_2017.pdf</ref> However, Stilton (a blue cheese) contains up to 217 mg tyramine per 100 grams.<ref name="Kathrynne" /> | ||
Line 91: | Line 91: | ||
**Dried and/or candied fruit rolled in licorice powder | **Dried and/or candied fruit rolled in licorice powder | ||
Tyramine formation has been associated with bacterial contamination of foods or temperature abuse conditions, but can also occur as a side effect of generally desired ripening processes.<ref name="Estimates of maximum tolerable levels of tyramine content in foods in Austria"> | Tyramine formation has been associated with bacterial contamination of foods or temperature abuse conditions, but can also occur as a side effect of generally desired ripening processes.<ref name="Estimates of maximum tolerable levels of tyramine content in foods in Austria">{{cite journal | vauthors=((Paulsen, P.)), ((Grossgut, R.)), ((Bauer, F.)), ((Rauscher-Gabernig, E.)) | journal=Journal of Food and Nutrition Research (Slovak Republic) | title=Estimates of maximum tolerable levels of tyramine content in foods in Austria | date= 2012 | url=https://agris.fao.org/agris-search/search.do?recordID=SK2012000039}}</ref> Tyramine is a breakdown product of the amino acid L-tyrosine. | ||
===Psychoactive substances=== | ===Psychoactive substances=== | ||
Line 106: | Line 106: | ||
***<small>L</small>-DOPA → dopamine, and epinephrine (adrenaline) | ***<small>L</small>-DOPA → dopamine, and epinephrine (adrenaline) | ||
***L-phenylalanine → L-tyrosine, and phenethylamine: Use with caution,<ref>{{cite web |last1=Metcalf |first1=Eric |title=Phenylalanine: Uses and Risks |url=https://www.webmd.com/vitamins-and-supplements/phenylalanine-uses-and-risks |website=WebMD |language=en}}</ref> taking phenylalanine while taking MAOIs may cause a severe increase in blood pressure (hypertensive crisis).<ref>{{cite web |title=Phenylalanine |url=http://slu.adam.com/content.aspx?productid=107&pid=33&gid=000318 |website=slu.adam.com |language=en}}</ref> | ***L-phenylalanine → L-tyrosine, and phenethylamine: Use with caution,<ref>{{cite web |last1=Metcalf |first1=Eric |title=Phenylalanine: Uses and Risks |url=https://www.webmd.com/vitamins-and-supplements/phenylalanine-uses-and-risks |website=WebMD |language=en}}</ref> taking phenylalanine while taking MAOIs may cause a severe increase in blood pressure (hypertensive crisis).<ref>{{cite web |title=Phenylalanine |url=http://slu.adam.com/content.aspx?productid=107&pid=33&gid=000318 |website=slu.adam.com |language=en}}</ref> | ||
***L-tryptophan → 5-HTP, and melatonin: May result in short-term serotonin syndrome.<ref name="Boyer-NEJM">{{cite journal | vauthors = Boyer EW, Shannon M | title = The serotonin syndrome | journal = The New England Journal of Medicine | volume = 352 | issue = 11 | pages = 1112–20 | date = March 2005 | pmid = 15784664 | doi = 10.1056/NEJMra041867 | ***L-tryptophan → 5-HTP, and melatonin: May result in short-term serotonin syndrome.<ref name="Boyer-NEJM">{{cite journal | vauthors = Boyer EW, Shannon M | title = The serotonin syndrome | journal = The New England Journal of Medicine | volume = 352 | issue = 11 | pages = 1112–20 | date = March 2005 | pmid = 15784664 | doi = 10.1056/NEJMra041867 | url = https://semanticscholar.org/paper/bd6134bea06b830b36b696ffd7b34b395f6f72ec }}</ref> | ||
***L-tyrosine → L-DOPA, and tyramine: It is unknown if MAOIs interact with tyrosine, so use with caution.<ref>{{cite web |title=Tyrosine: Benefits, Side Effects and Dosage |url=https://www.healthline.com/nutrition/tyrosine |website=Healthline |language=en |date=1 February 2018}}</ref> | ***L-tyrosine → L-DOPA, and tyramine: It is unknown if MAOIs interact with tyrosine, so use with caution.<ref>{{cite web |title=Tyrosine: Benefits, Side Effects and Dosage |url=https://www.healthline.com/nutrition/tyrosine |website=Healthline |language=en |date=1 February 2018}}</ref> | ||
**Amino acid metabolism metabolic intermediates | **Amino acid metabolism metabolic intermediates | ||
***[[SAM-e]] → epinephrine (adrenaline) | ***[[SAM-e]] → epinephrine (adrenaline) | ||
*[[Adrenergic]]s | *[[Adrenergic]]s | ||
*[[Lysergamides]]: [[LSA]] ([[morning glory]]: (''[[Argyreia nervosa]]'', ''[[Ipomoea tricolor]]'', etc)<ref>https://www.erowid.org/plants/morning_glory/morning_glory_basics.shtml</ref> | *[[Lysergamides]]: [[LSA]] ([[morning glory]]: (''[[Argyreia nervosa]]'', ''[[Ipomoea tricolor]]'', etc)<ref>{{Citation | title=Erowid Morning Glory Vault: Basics | url=https://www.erowid.org/plants/morning_glory/morning_glory_basics.shtml}}</ref> | ||
*[[Monoaminergic]]s (MA) | *[[Monoaminergic]]s (MA) | ||
**[[Cholinergic]]s (see also MAOIs that act as [[Talk:Acetylcholinesterase_inhibitor|acetylcholinesterase inhibitor]]s (AChEIs)), certain substances, examples: [[alpha-GPC|''alpha''-GPC]] (suspected monoaminergic),<ref name="Alpha-GPC and citicoline"> | **[[Cholinergic]]s (see also MAOIs that act as [[Talk:Acetylcholinesterase_inhibitor|acetylcholinesterase inhibitor]]s (AChEIs)), certain substances, examples: [[alpha-GPC|''alpha''-GPC]] (suspected monoaminergic),<ref name="Alpha-GPC and citicoline">{{cite journal | vauthors=((Tayebati, S. K.)), ((Tomassoni, D.)), ((Nwankwo, I. E.)), ((Di Stefano, A.)), ((Sozio, P.)), ((Cerasa, L. S.)), ((Amenta, F.)) | journal=CNS & neurological disorders drug targets | title=Modulation of monoaminergic transporters by choline-containing phospholipids in rat brain | volume=12 | issue=1 | pages=94–103 | date=1 February 2013 | issn=1996-3181 | doi=10.2174/1871527311312010015}}</ref><ref>{{cite journal | vauthors=((Trabucchi, M.)), ((Govoni, S.)), ((Battaini, F.)) | journal=Il Farmaco; Edizione Scientifica | title=Changes in the interaction between CNS cholinergic and dopaminergic neurons induced by L-alpha-glycerylphosphorylcholine, a cholinomimetic drug | volume=41 | issue=4 | pages=325–334 | date= April 1986 | issn=0430-0920}}</ref> [[centrophenoxine]],<ref name="Effect of centrophenoxine, piracetam and aniracetam on the monoamine oxidase activity in different brain structures of rats" /> [[citicoline]] (suspected monoaminergic)<ref name="Alpha-GPC and citicoline" /><ref>{{cite journal | vauthors=((Secades, J. J.)), ((Lorenzo, J. L.)) | journal=Methods and Findings in Experimental and Clinical Pharmacology | title=Citicoline: pharmacological and clinical review, 2006 update | volume=28 Suppl B | pages=1–56 | date= September 2006 | issn=0379-0355}}</ref> | ||
**[[#List of MAOIs|MAOI]]s, avoid mixing pure MAOIs. Plants with multiple MAOIs like ''Peganum harmala'' are fine since they have been evaluated. | **[[#List of MAOIs|MAOI]]s, avoid mixing pure MAOIs. Plants with multiple MAOIs like ''Peganum harmala'' are fine since they have been evaluated. | ||
***[[RIMA]]s | ***[[RIMA]]s | ||
Line 119: | Line 119: | ||
**Norepinephrine and dopamine disinhibitors (NDDIs): [[Fluoxetine]] | **Norepinephrine and dopamine disinhibitors (NDDIs): [[Fluoxetine]] | ||
*Opioids: Some opioid analgesics are associated with a risk of serotonin syndrome in combination with MAOIs due to their serotonergic properties. Other combinations may result in opioid toxicity due to CYP450 enzyme inhibition by the MAOI. Given the widespread availability of several suitable alternative drugs, the combination of dextromethorphan, methadone, pethidine, tramadol, fentanyl or tapentadol with an MAOI should usually be avoided, including in the 14 day period following the withdrawal of an irreversible MAOI. Morphine, codeine, oxycodone and buprenorphine are alternative opioids for patients receiving MAOIs, though starting at a low dose and titrating cautiously against clinical response is advised.<ref>https://www.sps.nhs.uk/articles/what-is-the-risk-of-interaction-between-opioids-and-monoamine-oxidase-inhibitors-maois/</ref> | *Opioids: Some opioid analgesics are associated with a risk of serotonin syndrome in combination with MAOIs due to their serotonergic properties. Other combinations may result in opioid toxicity due to CYP450 enzyme inhibition by the MAOI. Given the widespread availability of several suitable alternative drugs, the combination of dextromethorphan, methadone, pethidine, tramadol, fentanyl or tapentadol with an MAOI should usually be avoided, including in the 14 day period following the withdrawal of an irreversible MAOI. Morphine, codeine, oxycodone and buprenorphine are alternative opioids for patients receiving MAOIs, though starting at a low dose and titrating cautiously against clinical response is advised.<ref>https://www.sps.nhs.uk/articles/what-is-the-risk-of-interaction-between-opioids-and-monoamine-oxidase-inhibitors-maois/</ref> | ||
*[[Racetam]]s: [[Aniracetam]],<ref name="Effect of centrophenoxine, piracetam and aniracetam on the monoamine oxidase activity in different brain structures of rats"> | *[[Racetam]]s: [[Aniracetam]],<ref name="Effect of centrophenoxine, piracetam and aniracetam on the monoamine oxidase activity in different brain structures of rats">{{cite journal | vauthors=((Stancheva, S. L.)), ((Alova, L. G.)) | journal=Farmakologiia I Toksikologiia | title=[Effect of centrophenoxine, piracetam and aniracetam on the monoamine oxidase activity in different brain structures of rats] | volume=51 | issue=3 | pages=16–18 | date= June 1988 | issn=0014-8318}}</ref> [[piracetam]]<ref name="Effect of centrophenoxine, piracetam and aniracetam on the monoamine oxidase activity in different brain structures of rats" /> | ||
*Receptor agonists | *Receptor agonists | ||
**Serotonin receptor agonist | **Serotonin receptor agonist | ||
***5-HT<sub>1A</sub>: [[CBD]]<ref name="pmid16258853">{{cite journal | vauthors = Russo EB, Burnett A, Hall B, Parker KK | title = Agonistic properties of cannabidiol at 5-HT1a receptors | journal = Neurochemical Research | volume = 30 | issue = 8 | pages = 1037–43 | date = August 2005 | pmid = 16258853 | doi = 10.1007/s11064-005-6978-1 }}</ref> | ***5-HT<sub>1A</sub>: [[CBD]]<ref name="pmid16258853">{{cite journal | vauthors = Russo EB, Burnett A, Hall B, Parker KK | title = Agonistic properties of cannabidiol at 5-HT1a receptors | journal = Neurochemical Research | volume = 30 | issue = 8 | pages = 1037–43 | date = August 2005 | pmid = 16258853 | doi = 10.1007/s11064-005-6978-1 }}</ref> | ||
**Dopamine receptor agonist, examples: amphetamines ([[amphetamine]], [[lisdexamfetamine]], [[methamphetamine]]), [[cathinone]], [[cocaine]], [[PCP]], [[phenethylamine]], [[salvinorin A]] (found in ''[[Salvia divinorum]]''),<ref>Seeman P, Guan | **Dopamine receptor agonist, examples: amphetamines ([[amphetamine]], [[lisdexamfetamine]], [[methamphetamine]]), [[cathinone]], [[cocaine]], [[PCP]], [[phenethylamine]], [[salvinorin A]] (found in ''[[Salvia divinorum]]''),<ref>{{cite journal | vauthors=((Seeman, P.)), ((Guan, H.-C.)), ((Hirbec, H.)) | journal=Synapse | title=Dopamine D2 High receptors stimulated by phencyclidines, lysergic acid diethylamide, salvinorin A, and modafinil | volume=63 | issue=8 | pages=698–704 | date= August 2009 | url=https://onlinelibrary.wiley.com/doi/10.1002/syn.20647 | issn=08874476 | doi=10.1002/syn.20647}}</ref> [[tyramine]] | ||
***D2: [[CBD]],<ref>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5315552/</ref> | ***D2: [[CBD]],<ref>{{cite journal | vauthors=((Seeman, P.)) | journal=Translational Psychiatry | title=Cannabidiol is a partial agonist at dopamine D2High receptors, predicting its antipsychotic clinical dose | volume=6 | issue=10 | pages=e920 | date= October 2016 | url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5315552/ | issn=2158-3188 | doi=10.1038/tp.2016.195}}</ref> | ||
*[[Releasing agent]]s and monoamine releasing agent (MRA) (or monoamine releaser) | *[[Releasing agent]]s and monoamine releasing agent (MRA) (or monoamine releaser) | ||
**Dopamine releasing agent (DRA) | **Dopamine releasing agent (DRA) | ||
Line 157: | Line 157: | ||
**Psychedelic phenethylamines, examples: [[2C-x]] (and NBs for example [[25x-NBOH]], [[25x-NBOMe]]), [[DOx]], [[MDMA]], [[mescaline]] ([[psychedelic cacti]]) | **Psychedelic phenethylamines, examples: [[2C-x]] (and NBs for example [[25x-NBOH]], [[25x-NBOMe]]), [[DOx]], [[MDMA]], [[mescaline]] ([[psychedelic cacti]]) | ||
*[[Tryptamine#List_of_substituted_tryptamines|Substituted tryptamines]], examples: | *[[Tryptamine#List_of_substituted_tryptamines|Substituted tryptamines]], examples: | ||
**5-MeO-''xx''T: [[5-MeO-AMT]],<ref>https://erowid.org/chemicals/5meo_amt/5meo_amt_basics.shtml</ref> [[5-MeO-DiPT]],<ref name="The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain"> | **5-MeO-''xx''T: [[5-MeO-AMT]],<ref>{{Citation | title=Erowid 5-MeO-AMT Vault: Basics | url=https://erowid.org/chemicals/5meo_amt/5meo_amt_basics.shtml}}</ref> [[5-MeO-DiPT]],<ref name="The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain">{{cite journal | vauthors=((Nagai, F.)), ((Nonaka, R.)), ((Satoh Hisashi Kamimura, K.)) | journal=European Journal of Pharmacology | title=The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain | volume=559 | issue=2–3 | pages=132–137 | date=22 March 2007 | issn=0014-2999 | doi=10.1016/j.ejphar.2006.11.075}}</ref> [[5-MeO-DMT]],<ref name="The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain" /><ref>{{Citation | title=Erowid 5-MeO-DMT Vault : Health | url=https://erowid.org/chemicals/5meo_dmt/5meo_dmt_health.shtml}}</ref> [[5-MeO-MiPT]]<ref name="The effects of non-medically used psychoactive drugs on monoamine neurotransmission in rat brain" /><ref>{{Citation | title=Erowid 5-MeO-MIPT Vault: Basics | url=https://erowid.org/chemicals/5meo_mipt/5meo_mipt_basics.shtml}}</ref> | ||
*Tetracyclic antidepressants (TeCA), example: [[Mirtazapine]] | *Tetracyclic antidepressants (TeCA), example: [[Mirtazapine]] | ||
*Tricyclic antidepressants (TCA), example: [[Tianeptine]] | *Tricyclic antidepressants (TCA), example: [[Tianeptine]] | ||
*[[Tropane alkaloids]] | *[[Tropane alkaloids]] | ||
**Anticholinergics (found in (''[[Datura]] spp.'', ''[[Hyoscyamus niger (botany)|Hyoscyamus niger]]'', etc)<ref>https://www.erowid.org/plants/datura/datura_faq.shtml</ref>) | **Anticholinergics (found in (''[[Datura]] spp.'', ''[[Hyoscyamus niger (botany)|Hyoscyamus niger]]'', etc)<ref>{{Citation | title=Erowid Datura Vaults : Datura FAQ | url=https://www.erowid.org/plants/datura/datura_faq.shtml}}</ref>) | ||
***[[Atropine]] | ***[[Atropine]] | ||
***[[Hyoscyamine]] | ***[[Hyoscyamine]] | ||
Line 204: | Line 204: | ||
===Substances=== | ===Substances=== | ||
*[[Lysergamides]]: [[LSD]]. MAOIs seem to cause a greater reduction in the effects of LSD than SSRIs.<ref>https://erowid.org/chemicals/lsd/lsd_health3.shtml</ref> | *[[Lysergamides]]: [[LSD]]. MAOIs seem to cause a greater reduction in the effects of LSD than SSRIs.<ref>{{Citation | title=Erowid LSD (Acid) Vault : LSD and Antidepressants, by Mike | url=https://erowid.org/chemicals/lsd/lsd_health3.shtml}}</ref> | ||
==List of MAOIs== | ==List of MAOIs== | ||
Line 230: | Line 230: | ||
|- | |- | ||
|''[[Banisteriopsis caapi#Chemistry|Banisteriopsis caapi]]'' (ayahuasca, caapi or yagé) | |''[[Banisteriopsis caapi#Chemistry|Banisteriopsis caapi]]'' (ayahuasca, caapi or yagé) | ||
|[[Harmine]]<ref name="sciencedirect.com/topics/neuroscience/banisteriopsis-caapi">https://www.sciencedirect.com/topics/neuroscience/banisteriopsis-caapi</ref> | |[[Harmine]]<ref name="sciencedirect.com/topics/neuroscience/banisteriopsis-caapi">{{Citation | title=Banisteriopsis Caapi - an overview, ScienceDirect Topics | url=https://www.sciencedirect.com/topics/neuroscience/banisteriopsis-caapi}}</ref> | ||
|MAO-A, MAO-B | |MAO-A, MAO-B | ||
|- | |- | ||
|[[Piper nigrum (botany)|Black pepper]] (''Piper nigrum'') | |[[Piper nigrum (botany)|Black pepper]] (''Piper nigrum'') | ||
|Piperine<ref name="pubmed-15120460"> | |Piperine<ref name="pubmed-15120460">{{cite journal | vauthors=((Kong, L. D.)), ((Cheng, C. H. K.)), ((Tan, R. X.)) | journal=Journal of Ethnopharmacology | title=Inhibition of MAO A and B by some plant-derived alkaloids, phenols and anthraquinones | volume=91 | issue=2–3 | pages=351–355 | date= April 2004 | issn=0378-8741 | doi=10.1016/j.jep.2004.01.013}}</ref> | ||
|MAO-A, MAO-B | |MAO-A, MAO-B | ||
|- | |- | ||
|[[Cannabis#Chemistry|Cannabis]], Cannabis extract | |[[Cannabis#Chemistry|Cannabis]], Cannabis extract | ||
| | | | ||
|MAO-A, MAO-B<ref name=" | |MAO-A, MAO-B<ref name="Berlin2001"/> | ||
|- | |- | ||
|[[Cocoa]] bean (from ''Theobroma cacao'') | |[[Cocoa]] bean (from ''Theobroma cacao'') | ||
|[[Caffeine]]<ref name=" | |[[Caffeine]]<ref name="Nehlig2013">{{cite journal | vauthors=((Nehlig, A.)) | journal=British Journal of Clinical Pharmacology | title=The neuroprotective effects of cocoa flavanol and its influence on cognitive performance | volume=75 | issue=3 | pages=716–727 | date= March 2013 | url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575938/ | issn=0306-5251 | doi=10.1111/j.1365-2125.2012.04378.x}}</ref> | ||
|MAO-A, MAO-B<ref name="Caffeine" /> | |MAO-A, MAO-B<ref name="Caffeine" /> | ||
|- | |- | ||
|[[Cocoa]] bean (from ''Theobroma cacao'') | |[[Cocoa]] bean (from ''Theobroma cacao'') | ||
|Catechin<ref | |Catechin<ref name="Nehlig2013"/><ref name="Procyanidin flavonoids">{{cite journal | vauthors=((Gottumukkala, R. V. S. S.)), ((Nadimpalli, N.)), ((Sukala, K.)), ((Subbaraju, G. V.)) | journal=International Scholarly Research Notices | title=Determination of Catechin and Epicatechin Content in Chocolates by High-Performance Liquid Chromatography | volume=2014 | pages=628196 | date=28 October 2014 | url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897191/ | issn=2356-7872 | doi=10.1155/2014/628196}}</ref> | ||
|MAO-B<ref name="Catechin, and epicatechin"> | |MAO-B<ref name="Catechin, and epicatechin">{{cite journal | vauthors=((Hou, W.-C.)), ((Lin, R.-D.)), ((Chen, C.-T.)), ((Lee, M.-H.)) | journal=Journal of Ethnopharmacology | title=Monoamine oxidase B (MAO-B) inhibition by active principles from Uncaria rhynchophylla | volume=100 | issue=1–2 | pages=216–220 | date=22 August 2005 | issn=0378-8741 | doi=10.1016/j.jep.2005.03.017}}</ref> | ||
|- | |- | ||
|[[Cocoa]] bean (from ''Theobroma cacao'') | |[[Cocoa]] bean (from ''Theobroma cacao'') | ||
|Epicatechin<ref | |Epicatechin<ref name="Nehlig2013"/><ref name="Procyanidin flavonoids" /> | ||
|MAO-B<ref name="Catechin, and epicatechin" /> | |MAO-B<ref name="Catechin, and epicatechin" /> | ||
|- | |- | ||
|[[Cocoa]] bean (from ''Theobroma cacao'') | |[[Cocoa]] bean (from ''Theobroma cacao'') | ||
|Tetrahydro-beta-carbolines<ref | |Tetrahydro-beta-carbolines<ref name="Nehlig2013"/> | ||
| | | | ||
|- | |- | ||
|[[Coffea (botany)|Coffee]] (''Coffea arabica'', ''Coffea canephora'') | |[[Coffea (botany)|Coffee]] (''Coffea arabica'', ''Coffea canephora'') | ||
|[[Caffeine]] | |[[Caffeine]] | ||
|MAO-A, MAO-B<ref name="Caffeine"> | |MAO-A, MAO-B<ref name="Caffeine">{{cite journal | vauthors=((Petzer, A.)), ((Pienaar, A.)), ((Petzer, J. P.)) | journal=Life Sciences | title=The interactions of caffeine with monoamine oxidase | volume=93 | issue=7 | pages=283–287 | date=28 August 2013 | issn=1879-0631 | doi=10.1016/j.lfs.2013.06.020}}</ref> | ||
|- | |- | ||
|[[Coffea (botany)|Coffee]] (''Coffea arabica'', ''Coffea canephora'') | |[[Coffea (botany)|Coffee]] (''Coffea arabica'', ''Coffea canephora'') | ||
|Harman<ref name="Coffea"> | |Harman<ref name="Coffea">{{cite journal | vauthors=((Herraiz, T.)), ((Chaparro, C.)) | journal=Life Sciences | title=Human monoamine oxidase enzyme inhibition by coffee and beta-carbolines norharman and harman isolated from coffee | volume=78 | issue=8 | pages=795–802 | date=18 January 2006 | issn=0024-3205 | doi=10.1016/j.lfs.2005.05.074}}</ref> | ||
|MAO-A, MAO-B<ref name="harman">{{cite journal |last1=Herraiz |first1=T |last2=Chaparro |first2=C |title=Human monoamine oxidase enzyme inhibition by coffee and beta-carbolines norharman and harman isolated from coffee. |journal=Life sciences |date=18 January 2006 |volume=78 |issue=8 |pages=795-802 |doi=10.1016/j.lfs.2005.05.074 |pmid=16139309}}</ref> | |MAO-A, MAO-B<ref name="harman">{{cite journal |last1=Herraiz |first1=T |last2=Chaparro |first2=C |title=Human monoamine oxidase enzyme inhibition by coffee and beta-carbolines norharman and harman isolated from coffee. |journal=Life sciences |date=18 January 2006 |volume=78 |issue=8 |pages=795-802 |doi=10.1016/j.lfs.2005.05.074 |pmid=16139309}}</ref> | ||
|- | |- | ||
Line 274: | Line 274: | ||
|- | |- | ||
|Liquorice/licorice (''Glycyrrhiza Glabra'') | |Liquorice/licorice (''Glycyrrhiza Glabra'') | ||
|Liquiritigenin<ref name="pubmed-11501051"> | |Liquiritigenin<ref name="pubmed-11501051">{{cite journal | vauthors=((Pan, X.)), ((Kong, L. D.)), ((Zhang, Y.)), ((Cheng, C. H.)), ((Tan, R. X.)) | journal=Acta Pharmacologica Sinica | title=In vitro inhibition of rat monoamine oxidase by liquiritigenin and isoliquiritigenin isolated from Sinofranchetia chinensis | volume=21 | issue=10 | pages=949–953 | date= October 2000 | issn=1671-4083}}</ref> | ||
|MAO-A, MAO-B | |MAO-A, MAO-B | ||
|- | |- | ||
Line 282: | Line 282: | ||
|- | |- | ||
|[[Myristica fragrans (botany)|Nutmeg (''Myristica fragrans'')]] | |[[Myristica fragrans (botany)|Nutmeg (''Myristica fragrans'')]] | ||
|Kaempferol<ref> | |Kaempferol<ref>{{cite journal | vauthors=((Gidaro, M. C.)), ((Astorino, C.)), ((Petzer, A.)), ((Carradori, S.)), ((Alcaro, F.)), ((Costa, G.)), ((Artese, A.)), ((Rafele, G.)), ((Russo, F. M.)), ((Petzer, J. P.)), ((Alcaro, S.)) | journal=Journal of Agricultural and Food Chemistry | title=Kaempferol as Selective Human MAO-A Inhibitor: Analytical Detection in Calabrian Red Wines, Biological and Molecular Modeling Studies | volume=64 | issue=6 | pages=1394–1400 | date=17 February 2016 | issn=1520-5118 | doi=10.1021/acs.jafc.5b06043}}</ref> | ||
|MAO-A | |MAO-A | ||
|- | |- | ||
|[[Myristica fragrans (botany)|Nutmeg (''Myristica fragrans'')]] | |[[Myristica fragrans (botany)|Nutmeg (''Myristica fragrans'')]] | ||
|[[Myristicin]] | |[[Myristicin]] | ||
|MAO-A, MAO-B?<ref> | |MAO-A, MAO-B?<ref>{{cite journal | vauthors=((Truitt, E. B.)) | journal=Psychopharmacology Bulletin | title=The pharmacology of myristicin and nutmeg | volume=4 | issue=3 | pages=14 | date= December 1967 | issn=0048-5764}}</ref> | ||
|- | |- | ||
|[[Myristica fragrans (botany)|Nutmeg (''Myristica fragrans'')]] | |[[Myristica fragrans (botany)|Nutmeg (''Myristica fragrans'')]] | ||
|Quercetin<ref> | |Quercetin<ref>{{cite journal | vauthors=((Bandaruk, Y.)), ((Mukai, R.)), ((Kawamura, T.)), ((Nemoto, H.)), ((Terao, J.)) | journal=Journal of Agricultural and Food Chemistry | title=Evaluation of the inhibitory effects of quercetin-related flavonoids and tea catechins on the monoamine oxidase-A reaction in mouse brain mitochondria | volume=60 | issue=41 | pages=10270–10277 | date=17 October 2012 | issn=1520-5118 | doi=10.1021/jf303055b}}</ref> | ||
|MAO-A | |MAO-A | ||
|- | |- | ||
Line 311: | Line 311: | ||
|''Rhodiola rosea'' | |''Rhodiola rosea'' | ||
| | | | ||
|MAO-A, MAO-B<ref> | |MAO-A, MAO-B<ref>{{cite journal | vauthors=((Diermen, D. van)), ((Marston, A.)), ((Bravo, J.)), ((Reist, M.)), ((Carrupt, P.-A.)), ((Hostettmann, K.)) | journal=Journal of Ethnopharmacology | title=Monoamine oxidase inhibition by Rhodiola rosea L. roots | volume=122 | issue=2 | pages=397–401 | date=18 March 2009 | issn=1872-7573 | doi=10.1016/j.jep.2009.01.007}}</ref> | ||
|- | |- | ||
|[[Peganum_harmala#Chemistry|Syrian rue (''Peganum harmala'')]] | |[[Peganum_harmala#Chemistry|Syrian rue (''Peganum harmala'')]] | ||
Line 326: | Line 326: | ||
|- | |- | ||
|[[Nicotiana (botany)|Tobacco]] | |[[Nicotiana (botany)|Tobacco]] | ||
|1,2,3,4-tetrahydro-b-carboline (THbC)<ref name=" | |1,2,3,4-tetrahydro-b-carboline (THbC)<ref name="Berlin2001"/> | ||
|MAO-A, MAO-B | |MAO-A, MAO-B | ||
|- | |- | ||
|[[Nicotiana (botany)|Tobacco]] | |[[Nicotiana (botany)|Tobacco]] | ||
|1,2,3,4-tetrahydroisoquinoline<ref name=" | |1,2,3,4-tetrahydroisoquinoline<ref name="Berlin2001"/> | ||
|MAO-A, MAO-B | |MAO-A, MAO-B | ||
|- | |- | ||
|[[Nicotiana (botany)|Tobacco]] | |[[Nicotiana (botany)|Tobacco]] | ||
|[[Harman]]<ref name="Tobacco">https://www.sciencedirect.com/science/article/pii/S0161813X16302625</ref> | |[[Harman]]<ref name="Tobacco">{{cite journal | vauthors=((Truman, P.)), ((Grounds, P.)), ((Brennan, K. A.)) | journal=NeuroToxicology | title=Monoamine oxidase inhibitory activity in tobacco particulate matter: Are harman and norharman the only physiologically relevant inhibitors? | volume=59 | pages=22–26 | date=1 March 2017 | url=https://www.sciencedirect.com/science/article/pii/S0161813X16302625 | issn=0161-813X | doi=10.1016/j.neuro.2016.12.010}}</ref> | ||
|MAO-A, MAO-B<ref name="harman" /> | |MAO-A, MAO-B<ref name="harman" /> | ||
|- | |- | ||
Line 344: | Line 344: | ||
*Psychedelics | *Psychedelics | ||
**[[AET]]<ref name="Shulgin MAOI">https://erowid.org/chemicals/amt/amt_info1.shtml</ref> | **[[AET]]<ref name="Shulgin MAOI">{{Citation | title=Erowid AMT Vault : Information on AMT as an MAOI | url=https://erowid.org/chemicals/amt/amt_info1.shtml}}</ref> | ||
**[[AMT]]<ref name="Shulgin MAOI" /> | **[[AMT]]<ref name="Shulgin MAOI" /> | ||
*Pharmaceuticals | *Pharmaceuticals | ||
Line 359: | Line 359: | ||
*Naturally occurring sources | *Naturally occurring sources | ||
**Betel nut (''Areca catechu''): MAO-A inhibitor.<ref> | **Betel nut (''Areca catechu''): MAO-A inhibitor.<ref>{{cite journal | vauthors=((Dar, A.)), ((Khatoon, S.)), ((Rahman, G.)), ((Atta-Ur-Rahman, null)) | journal=Phytomedicine: International Journal of Phytotherapy and Phytopharmacology | title=Anti-depressant activities of Areca catechu fruit extract | volume=4 | issue=1 | pages=41–45 | date= March 1997 | issn=0944-7113 | doi=10.1016/S0944-7113(97)80026-8}}</ref><ref name="Berlin2001"/> | ||
**Yohimbe (''Pausinystalia johimbe''): [[Yohimbine]]<ref> | **Yohimbe (''Pausinystalia johimbe''): [[Yohimbine]]<ref>{{cite journal | vauthors=((Wagmann, L.)), ((Brandt, S. D.)), ((Kavanagh, P. V.)), ((Maurer, H. H.)), ((Meyer, M. R.)) | journal=Toxicology Letters | title=In vitro monoamine oxidase inhibition potential of alpha-methyltryptamine analog new psychoactive substances for assessing possible toxic risks | volume=272 | pages=84–93 | date=15 April 2017 | issn=1879-3169 | doi=10.1016/j.toxlet.2017.03.007}}</ref> | ||
*Psychedelics | *Psychedelics | ||
**[[2C-T-2]] (suspected, weak)<ref name="2C-T-2 and 2C-T-7">http://www.bluelight.org/vb/threads/385484-2C-T-family-and-MAOI-properties</ref> | **[[2C-T-2]] (suspected, weak)<ref name="2C-T-2 and 2C-T-7">http://www.bluelight.org/vb/threads/385484-2C-T-family-and-MAOI-properties</ref> | ||
**[[2C-T-7]] (suspected, strong)<ref name="2C-T-2 and 2C-T-7" /> | **[[2C-T-7]] (suspected, strong)<ref name="2C-T-2 and 2C-T-7" /> | ||
**[[Bromo-DragonFLY]] (suspected, very strong)<ref> | **[[Bromo-DragonFLY]] (suspected, very strong)<ref>{{cite journal | vauthors=((Noble, C.)), ((Holm, N. B.)), ((Mardal, M.)), ((Linnet, K.)) | journal=Toxicology Letters | title=Bromo-dragonfly, a psychoactive benzodifuran, is resistant to hepatic metabolism and potently inhibits monoamine oxidase A | volume=295 | pages=397–407 | date=1 October 2018 | issn=1879-3169 | doi=10.1016/j.toxlet.2018.07.018}}</ref> | ||
*Pharmaceuticals | *Pharmaceuticals | ||
**Bifemelane (Alnert, Celeport) (available in Japan) | **Bifemelane (Alnert, Celeport) (available in Japan) | ||
Line 375: | Line 375: | ||
===Selective MAO-B inhibitors=== | ===Selective MAO-B inhibitors=== | ||
*Naturally occurring sources | *Naturally occurring sources | ||
**Kava (''Piper methysticum''): Yangonin. Kava pyrones: The order of potency was desmethoxyyangonin > (+/-)-methysticin > yangonin > (+/-)-dihydromethysticin > (+/-)- dihydrokavain > (+/-)-kavain.<ref> | **Kava (''Piper methysticum''): Yangonin. Kava pyrones: The order of potency was desmethoxyyangonin > (+/-)-methysticin > yangonin > (+/-)-dihydromethysticin > (+/-)- dihydrokavain > (+/-)-kavain.<ref>{{cite journal | vauthors=((Uebelhack, R.)), ((Franke, L.)), ((Schewe, H. J.)) | journal=Pharmacopsychiatry | title=Inhibition of platelet MAO-B by kava pyrone-enriched extract from Piper methysticum Forster (kava-kava) | volume=31 | issue=5 | pages=187–192 | date= September 1998 | issn=0176-3679 | doi=10.1055/s-2007-979325}}</ref> | ||
**Olives (''Olea europaea''), fresh, olive leaf extract: The selective MAO-B inhibitor hydroxytyrosol.<ref>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5125943 | **Olives (''Olea europaea''), fresh, olive leaf extract: The selective MAO-B inhibitor hydroxytyrosol.<ref>{{cite journal | vauthors=((Goldstein, D. S.)), ((Jinsmaa, Y.)), ((Sullivan, P.)), ((Holmes, C.)), ((Kopin, I. J.)), ((Sharabi, Y.)) | journal=Neurochemical research | title=3,4-Dihydroxyphenylethanol (Hydroxytyrosol) Mitigates the Increase in Spontaneous Oxidation of Dopamine during Monoamine Oxidase Inhibition in PC12 Cells | volume=41 | issue=9 | pages=2173–2178 | date= September 2016 | url=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5125943/ | issn=0364-3190 | doi=10.1007/s11064-016-1959-0}}</ref> | ||
/ | |||
*Pharmaceuticals | *Pharmaceuticals | ||
**Rasagiline (Azilect) | **Rasagiline (Azilect) | ||
Line 400: | Line 399: | ||
*Naturally occurring sources | *Naturally occurring sources | ||
**''[[Mimosa tenuiflora (botany)|Mimosa tenuiflora]]'': As there have been no MAO inhibitors detected in M. tenuiflora, there is ongoing interest into how yurema exerts its visionary effects.<ref>https://www.sciencedirect.com/topics/neuroscience/dimethyltryptamine</ref> | **''[[Mimosa tenuiflora (botany)|Mimosa tenuiflora]]'': As there have been no MAO inhibitors detected in M. tenuiflora, there is ongoing interest into how yurema exerts its visionary effects.<ref>{{Citation | title=Dimethyltryptamine - an overview, ScienceDirect Topics | url=https://www.sciencedirect.com/topics/neuroscience/dimethyltryptamine}}</ref> | ||
==See also== | ==See also== |